Quinoline-Annulated Porphyrins
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Porphyrin-2,3-dione mono- and dioximes were used as starting materials for the efficient syntheses of mono- and bis-quinoline-annulated
porphyrins and their corresponding N-oxides. Owing to an extended sz-system, these novel porphyrinoid chromophores show significantly red-
shifted UV—vis spectra compared to the parent porphyrins. A crystal structure exemplifies the nonplanar conformation of the macrocycle.

The maximum wavelength of absorbance (4,,,,) for the
prototypical and most readily synthesized porphyrin meso-
tetraphenylporphyrin is 648 nm. This is outside the ‘optical
window’ of tissue.' Therefore, unmodified porphyrins can
find only limited use as spectroscopic labels, photosensiti-
zers, or imaging agents in tissue. Porphyrin reduction or ring
expansion may generate red-shifted chromophores.” The
establishment of a covalent linkage between the S-position
and a flanking phenyl group, such as in 1, has also shown to
be a viable route toward bathochromically shifted meso-
tetraarylporphyrin-based chromophores, as long as the
linkage forces the phenyl group into (idealized) coplanarity
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with the porphyrinic chromophore, thus extending the
7-conjugation pathway.>*
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In general, the strategy to expand the porphyrinic
m-conjugated electronic system by direct fusion of a
coplanar aromatic segment onto the periphery of the
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Scheme 1. Synthesis and Acid-Induced Reactions of Porphyrin-2,3-dione Mono- and Dioximes
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porphyrin has been shown to be quite versatile, whereby
the largest spectral shifts are achieved by annulation of
(multiple) polycyclic aromatic moieties (including other
porphyrins).>® Recent examples, such as the azulene- and
anthracene-fused porphyrins 2 and 3, introduced by
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Osuka, Kim, and Anderson, respectively, are representa-
tive examples for such annulated porphyrins.®

Porphyrin-2,3-dione 4, introduced by the group of
Crossley,” was shown to be a versatile molecule for the
generation of a structurally diverse family of j,5-annu-
lated systems by reaction of 4 with diamines.® We report
here the formation and reactivity of the mono- and
dioximes of 4 (Scheme 1) and their conversion to mono-
and bis-quinoline-annulated chromophores that are also
characterized by bathochromically shifted optical spectra
when compared to the parent meso-tetraphenylporphyrin
or dione 4. We also report the formation and X-ray cry-
stal structure of a bis-quinoline-fused porphyrin quinoline-
N-oxide 12.

Reaction of dione 4 with an ~100-fold excess of
NH,OH-HCI in pyridine at ambient temperature over
24 h forms one major product and a minor product (91%
and 5% isolated yields, respectively) that are identified as
the corresponding monooxime 5 (HR-MS ESI+, 100%
CH;CN, suggests a composition of CyyH30NsO, for
MH™) and bisoxime 6, respectively. A diagnostic signal
in the "H NMR spectrum (CDCls, 400 MHz) for 5 is a

(8) For recent examples, see: (a) Khoury, T.; Crossley, M. J. Chem.
Commun. 2007, 4851-4853. (b) Khoury, T.; Crossley, M. J. New J.
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Reimers, J. R. Org. Biomol. Chem. 2003, 1, 2777-2782.
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Figure 1. UV —vis spectra (CH,Cl,) of dione 4 (black trace),
monooxime 5 (tangerine trace), monoquinoline-fused 7 (green
trace), and quinoline N-oxide 11 (blue trace).

broadened peak at 15.7 ppm that is exchangeable with
D>0, assigned to the oxime hydrogen that is H-bonded to
the neighboring carbonyl group. Of note is that reac-
tion of 5 over extended periods of time with excess
NH,OH -HCl in pyridine yields only small (<20% yield)
quantities of bisoxime 6.

The UV—vis spectrum of the monooxime 5 and the
starting material 4 are similar in that both have a much
broadened Q-band region (Figure 1). The bisoxime 6
possesses a much sharpened UV —vis spectrum (see Sup-
porting Information).

Treatment of olive-colored monooxime 5 with a strong
acid (p-TSA) under enforcing conditions (toluene, reflux)
converts it into a light brown product with a mass indica-
ting the loss of H,O (HR-MS ESI+, 100% CH;3CN,
suggests a composition of C4H,gNsO for MH™). The
"H NMR spectrum of this product shows the hallmarks
of the presence of an o-fused phenyl group (also con-
firmed by 2D NMR spectroscopy, see ESI).* The '*C
NMR and IR (neat) spectra indicate the preservation of
the one f-imine and one f-ketone (at 151 and 196 ppm,
respectively). Taken together, the spectroscopic evidence
suggests quinoline-fused structure 7. This structure could
be indirectly confirmed by the X-ray crystal analysis of a
downstream product (see below).

The quinoline moiety fused to an oxochlorin frame-
work represents a novel motif in annulated porphyrins.
The steric requirements of this all-sp>-atom fusion imply,
first, an idealized coplanarity of the porphyrinoid chro-
mophore with the quinoline and, second, a steric clash
between the o’-hydrogen of the fused phenyl group with
the neighboring 3-hydrogen. The latter may be alleviated
by a distortion of the chromophore from planarity. The
UV —vis spectrum of 7 is much different from that of the
starting material and shows an overall broadened Soret
band and an intensified, broadened, and red-shifted
Q-band region (Figure 1).

The S-keto functionality of 7 is susceptible to conver-
sion to the corresponding oxime 8. Diagnostic peaks
for resulting oxime 8 in the '"H NMR spectrum are,
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Figure 2. UV—vis spectra (CH,Cl,) of monoquinoline-fused 7
(green trace), monoquinoline-oxime 8 (red trace), bis-quinoline-

fused 9 (violet trace), and bis-quinoline-fused N-oxide 12
(turquoise trace).

analogous to oxime 5, the signal for the strongly
H-bonded oxime hydrogen (at 15.9 ppm). The ketone-
to-oxime conversion of 7 to 8 perturbs the UV—vis
spectrum much more than the corresponding conversion
of dione 3 to oxime 5 (cf. Figures 1 and 2). Oxime 8 lends
itself to the formation of the bisquinoline-fused system 9.
The conversion generates a molecule with 2-fold symme-
try in its NMR spectra and only one imine stretching
frequency in its IR spectrum.” Owing to the presence of
the two annulated quinoline systems forming a pyrrolo-
[3,2-b:4,5-b']diquinoline moiety, a dramatically batho-
chromic UV—vis spectrum (A,,,x = 775 nm) is observed
(Figure 2), complementing the results obtained for other
annulated systems, such as 2 and 3.°

Bisoxime 6 can also be directly converted to bisquino-
line 9, albeit at significantly lower yield (12%) compared
to the stepwise approach (5—7—8—9, overall yield
~40%)."° Upon treatment of bisoxime 6 with acid, the
majority of the starting material ring-fuses only once and
hydrolyzes to monofused ketone 7. The next common
product is the dehydration product 1,2,5-oxadiazole-
fused porphyrin 10. The latter is a novel porphyrin-fused
system, but since its UV—vis spectrum is very regular
porphyrin-like, compound 10 will not be discussed any
further.

Serendipitously we found that oxidation of mono-
oxime 5 with DDQ also establishes a quinoline-fused
porphyrin, albeit as the quinoline-N-oxide 11 (Scheme 2).
NaBH, reduction of 11 regenerates 7, though a DDQ
oxidation of 7 does not lead to 11. Quinoline-fused system
7 and its N-oxide analogue 11 show very similar NMR
spectroscopic properties, and the presence of the oxygen
is only clearly demonstrated by MS. The presence of
the N-oxide has, however, an influence on the UV—vis

(9) Solubility problems prevented the recording of 3C NMR of 9,
but its Ni(IT) complex is soluble and characterized, including '*C NMR
spectrum; see Supporting Information.

(10) Also considering the inefficient synthesis of bisoxime 6, the
direct synthesis of bisquinoline 9 is not at all advantageous.
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Scheme 2. Oxidation-Induced Reactions of Oximes 5 and 8
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spectrum of the chromophore, highlighting the direct
conjugation of the quinoline with the porphyrinic chro-
mophore (Figure 1).

Reaction of f-keto N-oxide 11 with hydroxylamine
converts it to quinoline oxime 8; i.c., the N-oxide moiety
is lost in the process (Scheme 2). Oxidation of this oxime
establishes once again a fused quinoline N-oxide moiety,
thus forming the mono-N-oxide of the bis-quinoline-
fused compound 9, N-oxide 12. Again, the N-oxidation
of 9 has a surprisingly strong effect on the UV—vis
spectrum of 12.

Crystals of 12 suitable for investigation by single crystal
X-ray diffractometry could be grown by diffusion of
MeOH into a solution of 12 in CHCI; (Figure 3). The
structure confirms the deduced connectivity of 12 and, by
inference, confirms also the structure of the mono- and
bis-quinoline fused systems 7—9 and 11. Most noticeable,
the pentacyclic pyrrole-fused bis-quinoline moiety is
nearly planar, while the porphyrinic macrocycle is sig-
nificantly nonplanar. Most likely, the steric interactions
between the -hydrogens on the pyrrole and the hydro-
gens on the neighboring quinoline force the macrocycle
into the observed conformation.

The quinoline-annulated porphyrins possess low
(0.1 to 1072 %) fluorescence and singlet oxygen quantum
yields, an effect likely due to the interaction of the
porphyrinic 7—system with the imine/ketone functional-
ities. A detailed study of the ground and excited state
photophysical parameters of these chromophores is cur-
renly ongoing.

In conclusion, we have shown that porphyrin-2,3-dione
mono- and bisoximes can be utilized in the generation of
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Figure 3. Single crystal X-ray structure of bis-quinoline-fused
N-oxide system 12. (A) Top view. (B) View along axis indicated
in A by arrow. Disorder or hydrogens attached to sp>-carbons
not shown for clarity. Steric interaction between the 5-hydro-
gens and the neighboring quinoline hydrogens is indicated. For
full crystallographic information, see Supporting Information.

quinoline-annulated porphyrin chromophores with sig-
nificantly bathochromic spectra compared to regular
porphyrins. The red shift is rationalized by the presence
of an extended porphyrinic z-system. Thus, we have
merged Crossley’s 3,6’ -annulation strategies with meso-
p-fusions to generate a novel meso-f3,5'-meso-annulated
system. We have also shown a further modulation of the
chromophore by N-oxidation of the annulated heterocycle.

Studies investigating the metal complexes, particularly
those of group 10 metal ions, and a detailed photophysi-
cal characterization of the novel chromophores are
ongoing.
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